Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 May 17 2018 21:02:30
%S 1,5,87,2971,163121,12962661,1395857215,194634226067,33990369362241,
%T 7247035915622821,1848636684656077991,555005864462114884875,
%U 193458213840943964983537,77399534126148191747554181,35196002960227350045891984591,18037244723394790042393195636291
%N a(n) = 1/exp(1) * Sum_{k>=0} (k+n)!^2 / k!^3.
%C From _Peter Luschny_, Mar 27 2011: (Start)
%C Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 3! [x^3] taylor(B_{n}(x)), where [x^3] denotes the coefficient of x^3 in the Taylor series for B_{n}(x).
%C a(n) is column 3 of the square array representation of A090210. (End)
%H G. C. Greubel, <a href="/A069948/b069948.txt">Table of n, a(n) for n = 0..240</a>
%H K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp and A. I. Solomon, <a href="http://arxiv.org/abs/0904.0369">Laguerre-type derivatives: Dobinski relations and combinatorial identities</a>, J. Math. Phys. vol. 50, 083512 (2009)
%F Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n)=int(x^n*2*BesselK(0,2*sqrt(x))*hypergeom([],[1,1],x)/exp(1), x=0..infinity), n=0,1... Special values of the hypergeometric function of type 2F2: a(n)=exp(-1)*GAMMA(n+1)^2*hypergeom([n+1, n+1], [1, 1], 1). - _Karol A. Penson_ and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
%F Recurrence: (8*n-7)*a(n) = (24*n^3 + 3*n^2 - 26*n + 4)*a(n-1) - (n-1)^2*(24*n^3 - 85*n^2 + 66*n + 13)*a(n-2) + (n-1)^2*(8*n+1)*(n-2)^4*a(n-3). - _Vaclav Kotesovec_, Jul 30 2013
%F a(n) ~ n^(2*n+1/3)*exp(n^(1/3) + 3*n^(2/3) - 2*n - 2/3)/sqrt(3) * (1 + 41/(54*n^(1/3)) + 13769/(29160*n^(2/3))). - _Vaclav Kotesovec_, Jul 30 2013
%p A069948 := proc(n) exp(-x)*n!^2*hypergeom([n+1,n+1],[1,1],x);
%p round(evalf(subs(x=1,%),99)) end:
%p seq(A069948(n),n=0..13); # _Peter Luschny_, Mar 30 2011
%p # second Maple program:
%p a:= n-> sum((k+n)!^2/k!^3, k=0..infinity)/exp(1):
%p seq(a(n), n=0..15); # _Alois P. Heinz_, May 17 2018
%t f[n_] := f[n] = Sum[(k + n)!^3/((k + n)!*(k!^3)*E), {k, 0, Infinity}]; Table[ f[n], {n, 0, 13}] (* or *)
%t Table[n!^2*HypergeometricPFQ[{n + 1, n + 1}, {1, 1}, 1]/Exp[1], {n, 0, 13}] (* _Robert G. Wilson v_, Jan 11 2007 *)
%o (PARI) {default(realprecision, 200)}; for(n=0,30, print1(round(exp(-1)*(n!)^2*sum(k=0,500, binomial(n+k, k)^2/k!)), ", ")) \\ _G. C. Greubel_, May 17 2018
%Y Cf. A000110, A020556, A069223, A090210.
%K nonn
%O 0,2
%A _Robert G. Wilson v_, May 02 2002
%E More terms from _Robert G. Wilson v_, Jan 11 2007