login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime factors of n-th triangular number.
7

%I #14 Sep 21 2024 07:27:26

%S 0,1,2,2,2,2,2,2,2,2,3,3,2,3,3,2,2,2,3,4,3,2,3,3,2,2,3,3,3,3,2,3,3,3,

%T 4,3,2,3,4,3,3,3,3,4,3,2,3,3,2,3,4,3,2,3,4,4,3,2,4,4,2,3,3,3,4,3,3,4,

%U 4,3,3,3,2,3,4,4,4,3,3,3,2,2,4,5,3,3,4,3,3,4

%N Number of distinct prime factors of n-th triangular number.

%H Harvey P. Dale, <a href="/A069903/b069903.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A001221(A000217(n)).

%F Sum_{k=1..n} a(k) = 2 * n * (log(log(n)) + B - 1/4) + O(n/log(n)), where B is Mertens's constant (A077761). - _Amiram Eldar_, Sep 21 2024

%e A000217(11) = 11*(11+1)/2 = 66 = 2*3*11, therefore a(11) = 3.

%t PrimeNu[#]&/@Accumulate[Range[90]] (* _Harvey P. Dale_, Oct 06 2016 *)

%o (PARI) a(n) = omega(n*(n+1)/2); \\ _Michel Marcus_, Feb 05 2021

%o (PARI) a(n)=onega(n/gcd(n,2))+omega((n+1)/gcd(n+1)) \\ _Charles R Greathouse IV_, Sep 21 2024

%Y Cf. A000217, A001221, A059957, A069901, A069902, A069904, A077761.

%K nonn,easy

%O 1,3

%A _Reinhard Zumkeller_, Apr 10 2002