login
2^a(n) divides (2n)^(2n): exponent of 2 in (2n)^(2n).
7

%I #33 Sep 13 2024 06:57:58

%S 2,8,6,24,10,24,14,64,18,40,22,72,26,56,30,160,34,72,38,120,42,88,46,

%T 192,50,104,54,168,58,120,62,384,66,136,70,216,74,152,78,320,82,168,

%U 86,264,90,184,94,480,98,200,102,312,106,216,110,448,114,232,118,360,122

%N 2^a(n) divides (2n)^(2n): exponent of 2 in (2n)^(2n).

%H Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences with (relatively) simple ordinary generating functions</a>, 2004.

%H Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>.

%F a(n) = 2*n*A001511(n).

%F a(n) = A007814(A085534(n)). [corrected by _Kevin Ryde_, Oct 15 2021]

%F G.f.: Sum_{k>=0} 2^(k+1)*x^2^k/(1-x^2^k)^2. - _Ralf Stephan_, Jun 07 2003

%F a(n) = 2 * A091512(n). - _Alois P. Heinz_, Oct 14 2021

%F Sum_{k=1..n} a(k) ~ 2*n^2. - _Amiram Eldar_, Sep 13 2024

%p a:= 2*n*padic[ordp](2*n, 2):

%p seq(a(n), n=1..61); # _Alois P. Heinz_, Oct 14 2021

%t Table[ Part[ Flatten[ FactorInteger[n^n]], 2], {n, 2, 124, 2}]

%o (PARI) a(n) = n<<=1; n*valuation(n,2); \\ _Kevin Ryde_, Oct 14 2021

%o (Julia)

%o function A069895List(length)

%o a = zeros(Int, length)

%o for n in 1:length a[n] = 2 * (isodd(n) ? n : n + a[div(n, 2)]) end

%o a end

%o A069895List(61) |> println # _Peter Luschny_, Oct 16 2021

%o (Python)

%o def A069895(n): return n*(n&-n).bit_length()<<1 # _Chai Wah Wu_, Jul 11 2022

%Y Cf. A001511, A007814, A085534, A091512, A249153 (partial sums).

%K easy,nonn

%O 1,1

%A _Labos Elemer_, Apr 10 2002