login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A069881
Numbers n such that n and 2n+1 are both palindromes.
2
1, 2, 3, 4, 5, 55, 151, 161, 171, 181, 191, 252, 262, 272, 282, 292, 353, 363, 373, 383, 393, 454, 464, 474, 484, 494, 555, 5555, 15051, 15151, 15251, 15351, 15451, 16061, 16161, 16261, 16361, 16461, 17071, 17171, 17271, 17371, 17471, 18081, 18181
OFFSET
1,2
COMMENTS
Note that any number with all digits = 5 (A002279) is part of this sequence. - Jim McCann (jmccann(AT)umich.edu), Jul 16 2002
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..15636 (all terms up to 10^12)
EXAMPLE
151 is a member as 2*151 + 1 = 303 is also a palindrome.
MATHEMATICA
isPalin[n_]:=(n==FromDigits[Reverse[IntegerDigits[n]]]); Do[m = 2 n + 1; If[isPalin[n]&&isPalin[m], Print[n]], {n, 1, 10^5}] (* Vincenzo Librandi, Jan 22 2018 *)
PROG
(Perl) $a = 1; while((@b = split("|", $a) and @c = split("|", 2*$a+1) and (join("", reverse(@b)) eq join("", @b) and join("", reverse(@c)) eq join("", @c) and eval("print \"\$a \"; return 0; "))) or ++$a) { }
(PARI) isok(n) = (d=digits(n)) && (Vecrev(d)==d) && (dd=digits(2*n+1)) && (Vecrev(dd)==dd); \\ Michel Marcus, Jan 22 2018
CROSSREFS
Subsequence of A002113.
Sequence in context: A024638 A037330 A062939 * A004856 A325653 A037327
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Apr 30 2002
EXTENSIONS
More terms from Jim McCann (jmccann(AT)umich.edu), Jul 16 2002
STATUS
approved