login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(2) = 2^2 + 3^2; a(n) = (k-n+1)^n + (k-n)^n + ....(k-1)^n + k^n, where k = n(n+1)/2.
1

%I #7 Dec 05 2013 19:55:18

%S 1,13,405,23058,2078375,271739011,48574262275,11373936899396,

%T 3377498614484589,1240006139651007925,551449374186192949841,

%U 292093390490112799117190,181694111127303339553250275

%N a(1) = 1, a(2) = 2^2 + 3^2; a(n) = (k-n+1)^n + (k-n)^n + ....(k-1)^n + k^n, where k = n(n+1)/2.

%C Sum of next n n-th powers.

%e a(1) = 1^1 = 1; a(2) = 2^2 + 3^2 = 13; a(3) = 4^3 + 5^3 + 6^3 = 405, a(4) = 7^4 + 8^4 + 9^4 + 10^4 = 23058.

%t i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; Table[Sum[i^n, {i, i1, i2}], {n, 20}]

%Y Cf. A072474 (s=2), A075664 - A075670 (s=3-10), A075671 (s=n).

%K nonn

%O 1,2

%A _Amarnath Murthy_, Apr 25 2002

%E More terms from Larry Reeves (larryr(AT)acm.org) and _Zak Seidov_, Sep 24 2002