login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069823 Nonprime n such there is no x < n such that phi(x) = phi(n). 1
1, 15, 25, 35, 51, 65, 69, 81, 85, 87, 121, 123, 129, 141, 143, 159, 161, 177, 185, 187, 203, 213, 235, 247, 249, 253, 255, 265, 267, 275, 289, 299, 301, 309, 321, 323, 339, 341, 343, 361, 393, 403, 415, 425, 447, 485, 489, 501, 519, 527, 529, 535, 537, 551 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If p is prime there is no x < p such that phi(x) = phi(p) = p-1 since phi(x) < p-1.

Nonprime numbers n such that A081373(n)=1; i.e., number of numbers not exceeding n and with identical value of their phi than that of n, equals one. - Labos Elemer, Mar 24 2003

For 1 < n, if a(n) is squarefree, then phi(a(n)) is nonsquarefree. The converse is also true. For 1 < n, if phi(a(n)) is squarefree then a(n) is nonsquarefree. - Torlach Rush, Dec 26 2017

LINKS

Table of n, a(n) for n=1..54.

EXAMPLE

n=25, a nonprime; phi values for k <= 25 are {1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20}; no phi(k) except phi(25) equals 20, A081373(25)=1; if n is prime then A081373(n)=1 holds.

MATHEMATICA

f[x_] := EulerPhi[x] fc[x_] := Count[Table[f[j]-f[x], {j, 1, x}], 0] t1=Flatten[Position[Table[fc[w], {w, 1, 1000}], 1]] t2=Flatten[Position[PrimeQ[t1], False]] Part[t1, t2]

(* Second program: *)

Union@ Select[Values[PositionIndex@ Array[EulerPhi, 600]][[All, 1]], ! PrimeQ@ # &] (* Michael De Vlieger, Dec 31 2017 *)

PROG

(PARI) for(s=2, 600, if((1-isprime(s))*abs(prod(i=1, s-1, eulerphi(i)-eulerphi(s)))>0, print1(s, ", ")))

CROSSREFS

Cf. A081373, A067004, A000010.

Sequence in context: A200046 A171133 A152246 * A133321 A031888 A299469

Adjacent sequences:  A069820 A069821 A069822 * A069824 A069825 A069826

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Apr 28 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 05:49 EDT 2021. Contains 347469 sequences. (Running on oeis4.)