login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that gcd(k, phi(k)) = tau(k).
1

%I #21 Sep 08 2022 08:45:05

%S 1,8,9,18,24,40,56,84,88,104,136,152,156,184,228,232,248,296,328,344,

%T 360,372,376,424,444,472,488,516,536,568,584,632,664,712,732,776,792,

%U 804,808,824,856,872,876,904,948,1016,1048,1096,1112,1164,1192,1208

%N Numbers k such that gcd(k, phi(k)) = tau(k).

%H Georg Fischer, <a href="/A069809/b069809.txt">Table of n, a(n) for n = 1..2000</a> (first 1835 terms by Marius A. Burtea)

%t Select[Range[1300], GCD[#, EulerPhi[#]] == DivisorSigma[0, #] &] (* _Jayanta Basu_, Mar 21 2013 *)

%o (PARI) for(n=1,1592,if(gcd(n,eulerphi(n))==numdiv(n),print1(n,",")))

%o (Magma) [n: n in [1..2000] | GCD(n,EulerPhi(n)) eq NumberOfDivisors(n) ];// _Marius A. Burtea_, Dec 28 2018

%Y Cf. A000005, A000010, A009195.

%K easy,nonn

%O 1,2

%A _Benoit Cloitre_, Apr 30 2002