Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Sep 24 2018 17:45:12
%S 1,1,1,1,2,6,19,64,230,865,3364,13443,54938,228749,967628,4149024,
%T 18000758,78905518,349037335,1556494270,6991433386,31609302688,
%U 143755711433,657301771172,3020175361634,13939605844996,64604720622719
%N Number of rooted non-separable Eulerian planar maps with n edges.
%H Gheorghe Coserea, <a href="/A069728/b069728.txt">Table of n, a(n) for n = 0..500</a>
%H Daniel Birmajer, Juan B. Gil, Michael D. Weiner, <a href="https://arxiv.org/abs/1803.07727">A family of Bell transformations</a>, arXiv:1803.07727 [math.CO], 2018.
%H Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, <a href="https://doi.org/10.4230/LIPIcs.AofA.2018.29">Asymptotic Expansions for Sub-Critical Lagrangean Forms</a>, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
%H V. A. Liskovets and T. R. S. Walsh, <a href="http://dx.doi.org/10.1016/j.disc.2003.09.015">Enumeration of Eulerian and unicursal planar maps</a>, Discr. Math., 282 (2004), 209-221.
%F G.f.: y = A(x) satisfies 0 = y^5 - y^4 - 12*x*y^3 + x*(16*x + 11)*y^2 - 8*x^2*y + x^2. - _Gheorghe Coserea_, Apr 12 2018
%F a(n) ~ 75*sqrt(65)/(4394*sqrt(Pi)) * n^(-5/2) * (128/25)^n. - _Gheorghe Coserea_, and _Vaclav Kotesovec_, Apr 12 2018
%F A(x) = 1 + serreverse((1+x)^2*(1+12*x-(1-4*x)^(3/2))/(2*(4*x+3)^2)); equivalently, it can be rewritten as A(x) = 1 + serreverse((y-1)*(y^2+y-1)^2/(y^3*(3*y-2)^2)), where y = A000108(x). - _Gheorghe Coserea_, Apr 14 2018
%e A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 19*x^6 + 64*x^7 + 230*x^8 + ...
%t Flatten[{1, Table[(Sum[(-1)^j*Binomial[2*n + j - 1, j] * Sum[(-1)^k*2^(n - j - k - 1)*Binomial[j, k] * Binomial[2*n, n - j - k - 1], {k, 0, Min[j, n - j - 1]}], {j, 0, n - 1}] - 2*Sum[(-1)^j*Binomial[2*n + j - 1, j] * Sum[(-1)^k*2^(n - j - k - 2) * Binomial[j, k]*Binomial[2*n, n - j - k - 2], {k, 0, Min[j, n - j - 2]}], {j, 0, n - 2}])/n, {n, 1, 30}]}] (* _Vaclav Kotesovec_, Apr 13 2018 *) (* In the article by Liskovets and Walsh, p. 218, E'ns(n), the factor -2*Sum[...] is missing. *)
%o (PARI)
%o seq(N) = {
%o my(x ='x+O('x^N), y=serreverse(x*(1+x/2-x^2/4)^2/(2*(1+x)^2)));
%o Vec(1+y/2-y^2/4);
%o };
%o seq(27) \\ _Gheorghe Coserea_, Apr 12 2018
%Y Cf. A000257.
%K nonn
%O 0,5
%A _Valery A. Liskovets_, Apr 07 2002