login
a(1) = 6; a(n) = smallest palindromic number of the form k*a(n-1) + 1 with k > 1.
6

%I #18 May 26 2024 13:41:10

%S 6,55,111,1111,11111,111111,1111111,11111111,111111111,1111111111,

%T 11111111111,111111111111,1111111111111,11111111111111,

%U 111111111111111,1111111111111111,11111111111111111,111111111111111111

%N a(1) = 6; a(n) = smallest palindromic number of the form k*a(n-1) + 1 with k > 1.

%H Vincenzo Librandi, <a href="/A069508/b069508.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).

%F a(n) = {10^(n)-1}/9 for n > 2.

%F From _Chai Wah Wu_, Jun 20 2016: (Start)

%F a(n) = 11*a(n-1) - 10*a(n-2) for n > 3.

%F G.f.: (440*x^3 - 434*x^2 - 11*x + 6)/((x - 1)*(10*x - 1)). (End)

%t CoefficientList[Series[(440 x^3 - 434 x^2 - 11 x + 6) / ((x - 1) (10 x - 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Jun 21 2016 *)

%o (Magma) I:=[6,55,111,1111]; [n le 4 select I[n] else 11*Self(n-1)-10*Self(n-2): n in [1..25]]; // _Vincenzo Librandi_, Jun 21 2016

%Y Cf. A069505, A069506, A069507, A069509, A069510.

%K nonn,base

%O 0,1

%A _Amarnath Murthy_, Mar 30 2002

%E More terms from _Patrick De Geest_, Jun 11 2003