login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for rho with erf(rho) = 1/2 = erfc(rho).
2

%I #13 Mar 01 2023 04:39:25

%S 0,2,10,2,1,17,3,1,12,6,6,2,2,1,7,1,6,1,15,2,1,1,2,1,1,1,2,4,1,6,1,1,

%T 1,4,14,2,10,1,3,3,4,1,2,1,8,7,1,12,2,1,1,1,6,4,2,1,2,1,2,1,3,1,7,4,2,

%U 1,7,1,1,2,35,1,13,13,1,2,9,8,1,1,11,2,3,12,15,1,4,2,2,1,2,2,7,1,3,3

%N Continued fraction for rho with erf(rho) = 1/2 = erfc(rho).

%H G. C. Greubel, <a href="/A069287/b069287.txt">Table of n, a(n) for n = 0..5000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Erf.html">Erf</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Erfc.html">Erfc</a>.

%e 0.4769362762044698733814183536431305598089697490594706447...

%t ContinuedFraction[InverseErf[1/2], 50] (* _G. C. Greubel_, Apr 22 2018 *)

%Y Cf. A069286 (decimal expansion).

%K nonn,cofr

%O 0,2

%A _Frank Ellermann_, Mar 14 2002