login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

17-almost primes (generalization of semiprimes).
28

%I #32 Aug 31 2024 18:05:45

%S 131072,196608,294912,327680,442368,458752,491520,663552,688128,

%T 720896,737280,819200,851968,995328,1032192,1081344,1105920,1114112,

%U 1146880,1228800,1245184,1277952,1492992,1507328,1548288,1605632,1622016

%N 17-almost primes (generalization of semiprimes).

%C Product of 17 not necessarily distinct primes.

%C Divisible by exactly 17 prime powers (not including 1).

%C For n = 1..2628 a(n)=2*A069277(n). - _Zak Seidov_, Jun 25 2017

%H D. W. Wilson, <a href="/A069278/b069278.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Almost Prime.</a>

%F Product p_i^e_i with Sum e_i = 17.

%t Select[Range[2*10^6],PrimeOmega[#]==17&] (* _Harvey P. Dale_, Sep 28 2016 *)

%o (PARI) k=17; start=2^k; finish=2000000; v=[] for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v

%o (Python)

%o from math import isqrt, prod

%o from sympy import primerange, integer_nthroot, primepi

%o def A069278(n):

%o def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))

%o def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,17)))

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o return bisection(f) # _Chai Wah Wu_, Aug 31 2024

%Y Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), this sequence (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011

%K nonn

%O 1,1

%A _Rick L. Shepherd_, Mar 13 2002