login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

16-almost primes (generalization of semiprimes).
29

%I #33 Aug 31 2024 18:05:26

%S 65536,98304,147456,163840,221184,229376,245760,331776,344064,360448,

%T 368640,409600,425984,497664,516096,540672,552960,557056,573440,

%U 614400,622592,638976,746496,753664,774144,802816,811008,829440,835584,860160

%N 16-almost primes (generalization of semiprimes).

%C Product of 16 not necessarily distinct primes.

%C Divisible by exactly 16 prime powers (not including 1).

%C Any 16-almost prime can be represented in several ways as a product of two 8-almost primes A046310; in several ways as a product of four 4-almost primes A014613; and in several ways as a product of eight semiprimes A001358. - _Jonathan Vos Post_, Dec 12 2004

%H D. W. Wilson, <a href="/A069277/b069277.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Almost Prime.</a>

%F Product p_i^e_i with Sum e_i = 16.

%t Select[Range[300000], Plus @@ Last /@ FactorInteger[ # ] == 16 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *)

%t Select[Range[10^6],PrimeOmega[#]==16&] (* _Harvey P. Dale_, Jan 30 2015 *)

%o (PARI) k=16; start=2^k; finish=1000000; v=[] for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v

%o (Python)

%o from math import isqrt, prod

%o from sympy import primerange, integer_nthroot, primepi

%o def A069277(n):

%o def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))

%o def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,16)))

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o return bisection(f) # _Chai Wah Wu_, Aug 31 2024

%Y Cf. A014610, A101637, A101638, A101605, A101606.

%Y Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), this sequence (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011

%K nonn

%O 1,1

%A _Rick L. Shepherd_, Mar 13 2002