login
13-almost primes (generalization of semiprimes).
28

%I #28 Nov 04 2024 09:30:18

%S 8192,12288,18432,20480,27648,28672,30720,41472,43008,45056,46080,

%T 51200,53248,62208,64512,67584,69120,69632,71680,76800,77824,79872,

%U 93312,94208,96768,100352,101376,103680,104448,107520,112640,115200

%N 13-almost primes (generalization of semiprimes).

%C Product of 13 not necessarily distinct primes.

%C Divisible by exactly 13 prime powers (not including 1).

%H D. W. Wilson, <a href="/A069274/b069274.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Almost Prime.</a>

%F Product p_i^e_i with Sum e_i = 13.

%t Select[Range[30000], Plus @@ Last /@ FactorInteger[ # ] == 13 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *)

%t Select[Range[116000],PrimeOmega[#]==13&] (* _Harvey P. Dale_, Mar 11 2019 *)

%o (PARI) k=13; start=2^k; finish=130000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v

%o (Python)

%o from math import isqrt, prod

%o from sympy import primerange, integer_nthroot, primepi

%o def A067274(n):

%o def bisection(f, kmin=0, kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))

%o def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 13)))

%o return bisection(f, n, n) # _Chai Wah Wu_, Nov 03 2024

%Y Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), this sequence (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011

%K nonn

%O 1,1

%A _Rick L. Shepherd_, Mar 13 2002