login
A069257
Denominator of the last term of the Egyptian fraction sum (using the greedy algorithm) which satisfies 1 = 1/n + 1/(n+1) + 1/(n+2) ... 1/a(n).
2
6, 20, 57960, 3145940416080, 5765760, 288680192354725622464710969631440008928, 20484953806009937929429725901717124022833778640, 59553628273094395440, 102119994931499628863688098762720537989600
OFFSET
2,1
COMMENTS
The next term in the series, a(11), is 7*10^192.
LINKS
EXAMPLE
Since 1 = 1/3 + 1/4 + 1/5 + 1/6 + 1/20, a(3) = 20.
MATHEMATICA
a[n_] := Module[{s = 1/n, k = n}, While[s < 1, k = Max[k + 1, Ceiling[1/(1 - s)]]; s += 1/k]; k]; Array[a, 9, 2] (* Amiram Eldar, Oct 18 2019 *)
CROSSREFS
Sequence in context: A175671 A222741 A338427 * A133885 A170867 A321776
KEYWORD
easy,frac,nonn
AUTHOR
Christopher Lund (clund(AT)san.rr.com), Apr 14 2002
STATUS
approved