login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of basis partitions of n+64 with Durfee square size 8.
2

%I #17 Jul 18 2018 02:30:17

%S 1,2,4,8,14,24,40,64,100,152,226,330,474,670,934,1286,1748,2350,3128,

%T 4122,5384,6974,8960,11426,14468,18196,22740,28248,34888,42854,52366,

%U 63670,77048,92816,111324,132970,158194,187482,221380,260488,305466

%N Number of basis partitions of n+64 with Durfee square size 8.

%H Seiichi Manyama, <a href="/A069251/b069251.txt">Table of n, a(n) for n = 0..10000</a>

%H M. D. Hirschhorn, <a href="https://doi.org/10.1016/S0012-365X(99)00030-8">Basis partitions and Rogers-Ramanujan partitions</a>, Discrete Math. 205 (1999), 241-243.

%F G.f.: (x^4 -x^3 +x^2 -x +1)*(x^4 -x^2 +1)*(x^6 -x^5 +x^4 -x^3 +x^2 -x +1)*(x^8 +1)/((x -1)^8*(x^2 +x +1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). [_Colin Barker_, Sep 23 2012]

%o (PARI) s=8; a(n)=polcoeff(prod(i=1,s,(1+x^i))/(prod(i=1,s,(1-x^i))+x*O(x^n)),n) for(n=0,50,print1(a(n),","))

%Y Column k=8 of A316723.

%K nonn,easy

%O 0,2

%A _Benoit Cloitre_, Apr 13 2002