login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069238
Numerator of coefficient G_n defined by Sum_{ (m,m') != (0,0)} 1/(m+m'*sqrt(-2))^(2*n) = (4*w)^(2*n)*G_n/(2*n)!, where 2w is one of the periods of the associated Weierstrass P-function.
2
2, 1, 2, 10, 700, 700, 9800, 3185000, 85358000, 1484210000, 4904900000, 213514756000, 10932576200000, 651421552600000, 491216647558000000, 59347135259594000000, 308654469531044000000, 582291574342534420000000, 3395537788696824680000000
OFFSET
1,1
REFERENCES
E. Dintzl, Über die Zahlen im Koerper k(sqrt(-2)), welche den Bernoulli'schen Zahlen analog sind, Sitz. K. Akad. Wiss. Wien, Math.-Naturw. Klasse, 108 (1909), 1-29.
FORMULA
For n >= 2, G_n = A069182(n-1)*(2*n)/(2^(2*n-1)*(-1+(-2)^n)).
EXAMPLE
G_1, G_2, ... = 2/3, 1/3, 2/3, 10/3, 700/33, 700/3, 9800/3, 3185000/51, ...
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Apr 13 2002
STATUS
approved