login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * 3^n * Sum_{i=1..n} 1/(i * 3^i).
2

%I #13 Jul 10 2015 18:17:21

%S 1,7,65,786,11814,212772,4468932,107259408,2896044336,86881692960,

%T 2867099496480,103215621790080,4025409728814720,169067214837239040,

%U 7608024754854048000,365185189540668672000,18624444687496892160000

%N a(n) = n! * 3^n * Sum_{i=1..n} 1/(i * 3^i).

%F E.g.f.: -log(1-x)/(1-3*x). - _Vladeta Jovovic_, Feb 07 2003

%F a(n) ~ n! * 3^n * log(3/2). - _Vaclav Kotesovec_, Oct 05 2013

%t Rest[CoefficientList[Series[-Log[1-x]/(1-3*x), {x, 0, 20}], x]* Range[0, 20]!] (* _Vaclav Kotesovec_, Oct 05 2013 *)

%Y Cf. A000254, A068102.

%K easy,nonn

%O 1,2

%A _Benoit Cloitre_, Apr 14 2002