login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of incongruent ways to tile a 6 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.
2

%I #13 Nov 28 2018 08:01:02

%S 1,6,2,2,1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,4,4,5,6,7,7,8,8,10,12,13,14,15,

%T 17,20,21,26,26,31,34,38,44,47,56,60,66,78,82,100,104,122,134,148,176,

%U 186,217,238,266,310,328,393,417,483,543,594,694,745,870,960,1066,1237

%N Number of incongruent ways to tile a 6 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1311.6135">Paving rectangular regions with rectangular tiles,....</a>, arXiv:1311.6135 [math.CO], Table 13.

%H F. Ruskey and J. Woodcock, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i1r126">Counting Fixed-Height Tatami Tilings</a>, Electronic Journal of Combinatorics, Paper R126 (2009) 20 pages. [_Frank Ruskey_, Sep 26 2010]

%F For n >= 28, a(n) = a(n-5) + a(n-7) + a(n-10) + a(n-14) - a(n-15) - a(n-17) - a(n-19) - a(n-21).

%F G.f.: -x*(-1-6*x-2*x^2-3*x^16+6*x^15 +2*x^14-6*x^18 +2*x^7+7*x^8+2*x^9 +2*x^10 +6*x^11 +2*x^12+2*x^13-2*x^19-5*x^20-2*x^21 -6*x^22-2*x^23 +x^26 -2*x^3-x^4 +5*x^6)/ ((x^2-x+1) * (x^5+x^4+x^3-x-1) * (x^4-x^2+1) * (x^10 +x^8 +x^6-x^2-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by _R. J. Mathar_, Sep 16 2009

%Y Cf. A068925 for total number of tilings, A068926 for more info.

%K easy,nonn

%O 1,2

%A _Dean Hickerson_, Mar 11 2002