login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Sum_{k=1..n} k/phi(k).
2

%I #13 Sep 18 2022 12:37:01

%S 1,3,9,13,31,43,143,167,185,215,1141,1321,231,763,3277,3517,7289,8009,

%T 24787,26587,27847,29431,332021,355781,365681,382841,394721,413201,

%U 2949827,3157727,643003,665179,3417371,3535181,3616031,3782351,1279777,3956371,4046461

%N Numerator of Sum_{k=1..n} k/phi(k).

%D József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.27, page 29.

%H Amiram Eldar, <a href="/A068885/b068885.txt">Table of n, a(n) for n = 1..1000</a>

%H R. Sitaramachandrarao, <a href="https://www.jstor.org/stable/44236939">On an error term of Landau - II</a>, The Rocky Mountain Journal of Mathematics, Vol. 15, No. 2 (1985), pp. 579-588.

%F a(n)/A069947(n) ~ c * n - log(n)/2 + O(log(n)^(2/3)), where c = zeta(2)*zeta(3)/zeta(6) (A082695) (Sitaramachandrarao, 1985). - _Amiram Eldar_, Sep 18 2022

%e 1, 3, 9/2, 13/2, 31/4, 43/4, 143/12, 167/12, 185/12, ...

%t Numerator @ Accumulate @ Table[k/EulerPhi[k], {k, 1, 40}] (* _Amiram Eldar_, Sep 18 2022 *)

%o (PARI) a(n) = numerator(sum(k=1, n, k/eulerphi(k))); \\ _Michel Marcus_, Sep 18 2022

%Y Cf. A069947 (denominators), A000010, A028415, A048049, A082695.

%K nonn,frac

%O 1,2

%A _N. J. A. Sloane_, Jun 28 2002