login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Catalan numbers.
15

%I #38 Jul 24 2023 09:22:20

%S 1,1,4,18,88,456,2464,13736,78432,456416,2697088,16141120,97632000,

%T 595912960,3665728512,22703097472,141448381952,885934151168,

%U 5575020435456,35230798994432,223485795258368,1422572226146304,9083682419818496,58169612565614592,373486362257899520,2403850703479816192

%N Generalized Catalan numbers.

%C a(n) = K(2,2; n)/2 with K(a,b; n) defined in a comment to A068763.

%C Hankel transform is A166232(n+1). - _Paul Barry_, Oct 09 2009

%H Vincenzo Librandi, <a href="/A068764/b068764.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: (1-sqrt(1-8*x*(1-x)))/(4*x).

%F a(n+1) = 2*sum(a(k)*a(n-k), k=0..n), n>=1, a(0) = 1 = a(1).

%F a(n) = (2^n)*p(n, -1/2) with the row polynomials p(n, x) defined from array A068763.

%F E.g.f. (offset -1) is exp(4*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - _Vladeta Jovovic_, Mar 31 2004

%F The o.g.f. satisfies A(x) = 1 + x*(2*A(x)^2 - 1), A(0) = 1. - _Wolfdieter Lang_, Nov 13 2007

%F a(n) = subs(t=1,(d^(n-1)/dt^(n-1))(-1+2*t^2)^n)/n!, n >= 2, due to the Lagrange series for the given implicit o.g.f. equation. This formula holds also for n=1 if no differentiation is used. - _Wolfdieter Lang_, Nov 13 2007, Feb 22 2008

%F 1/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-..... (continued fraction). - _Paul Barry_, Jan 29 2009

%F a(n) = A166229(n)/(2-0^n). - _Paul Barry_, Oct 09 2009

%F a(n) = sum(binomial(n-1,k-1)*1/k*sum(binomial(k,j)*binomial(k+j,j-1),j,1,k),k,1,n), n>0. - _Vladimir Kruchinin_, Aug 11 2010

%F D-finite with recurrence: (n+1)*a(n) = 4*(2*n-1)*a(n-1) - 8*(n-2)*a(n-2). - _Vaclav Kotesovec_, Oct 13 2012

%F a(n) ~ sqrt(1+sqrt(2))*(4+2*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 13 2012

%F a(n) = 4^(n-1)*hypergeom([(1-n)/2,1-n/2], [2], 1/2) + 0^n/sqrt(2). - _Vladimir Reshetnikov_, Nov 07 2015

%F 0 = a(n)*(+64*a(n+1) - 160*a(n+2) + 32*a(n+3)) + a(n+1)*(+32*a(n+1) + 48*a(n+2) - 20*a(n+3)) + a(n+2)*(+4*a(n+2) + a(n+3)) for all n>=0. - _Michael Somos_, Nov 08 2015

%F a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(2*k+1,n) / (2*k+1). - _Seiichi Manyama_, Jul 24 2023

%e G.f. = 1 + x + 4*x^2 + 18*x^3 + 88*x^4 + 456*x^5 + 2464*x^6 + 13736*x^7 + ...

%t Table[SeriesCoefficient[(1-Sqrt[1-8*x*(1-x)])/(4*x),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 13 2012 *)

%t Round@Table[4^(n-1) Hypergeometric2F1[(1-n)/2, 1-n/2, 2, 1/2] + KroneckerDelta[n]/Sqrt[2], {n, 0, 20}] (* _Vladimir Reshetnikov_, Nov 07 2015 *)

%t a[ n_] := If[ n < 1, Boole[n == 0], 4^(n - 1) Hypergeometric2F1[ (1 - n)/2, (2 - n)/2, 2, 1/2]]; (* _Michael Somos_, Nov 08 2015 *)

%o (PARI) {a(n) = my(A); if( n<1, n==0, n--; A = x * O(x^n); n! * simplify( polcoeff( exp(4*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* _Michael Somos_, Mar 31 2007 */

%o (Maxima) a(n):=sum(binomial(n-1,k-1)*1/k*sum(binomial(k,j)*binomial(k+j,j-1),j,1,k),k,1,n); \\ _Vladimir Kruchinin_, Aug 11 2010

%o (PARI) x='x+O('x^66); Vec((1-sqrt(1-8*x*(1-x)))/(4*x)) \\ _Joerg Arndt_, May 06 2013

%Y Cf. A025227, A025228, A025229, A025230.

%Y Cf. A071356, A001003, A025235.

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, Mar 04 2002