Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 24 2019 09:38:39
%S 2,3,5,7,23,29,41,43,47,61,67,83,89,223,227,229,241,263,269,281,283,
%T 401,409,421,443,449,461,463,467,487,601,607,641,643,647,661,683,809,
%U 821,823,827,829,863,881,883,887,2003,2027,2029,2063,2069,2081,2083,2087
%N Primes such that all digits (except perhaps the least significant digit) are even.
%C Essentially the same as A154764.
%H Zak Seidov, <a href="/A068690/b068690.txt">Table of n, a(n) for n = 1..10775</a> (all terms < 10^8.)
%e 2 is in the sequence even though the least significant digit of 2 is even instead of odd. - _David A. Corneth_, Sep 18 2019
%t (*returns true if all but the last digit of n is even, false o.w.*) f[n_] := Module[{a, l, i, r = True}, a = IntegerDigits[n]; l = Length[a]; For[i = 1, i < l, i++, If[Mod[a[[i]], 2] == 1, r = False; Break[ ]]]; r]; Select[Range[1, 4*10^3], PrimeQ[ # ] && f[ # ] &]
%t m = 7; Prepend[Reap[Do[If[PrimeQ[fd = FromDigits[{a[1], a[2], a[3], a[4], a[5], a[6], a[m]}]], Sow[fd]], {a[1], 0, 8, 2}, {a[2], 0, 8, 2}, {a[3], 0, 8, 2}, {a[4], 0, 8, 2}, {a[5], 0, 8, 2}, {a[6], 0, 8, 2}, {a[m], 1, 9, 2}]][[2, 1]], 2] (* all terms < 10^8. _Zak Seidov_, Jan 29 2013 *)
%t Select[ Prime@ Range[10000], ContainsAll[{0, 2, 4, 6, 8}, Most@ IntegerDigits[#]] &] (* From version 10. _Mikk Heidemaa_, Feb 08 2016 *)
%t Select[Prime[Range[400]],AllTrue[Most[IntegerDigits[#]],EvenQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Sep 18 2019 *)
%o (Haskell)
%o a068690 n = a068690_list !! (n-1)
%o a068690_list = filter (all (`elem` "02468") . init . show) a000040_list
%o -- _Reinhard Zumkeller_, Apr 28 2014
%Y Cf. A030096, A154764.
%K base,easy,nonn
%O 1,1
%A _Amarnath Murthy_ and _Joseph L. Pe_, Mar 03 2002
%E Definition rephrased by _N. J. A. Sloane_, Dec 11 2007