login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that sigma(n) = product of the squares of the decimal digits of n.
3

%I #12 Apr 23 2017 03:33:07

%S 1,1426,2235,13462,45192,67512,95241,119186,134732,152434,165271,

%T 263351,541443,1424335,2316354,2341535,2521376,3263541,3265218,

%U 3341572,3652182,4214295,4225417,5147324,5232472,6442513,11454724,11765416,11976314,12354716,12623752,13181665,13322745,13416198,14135891,14235642,14513891,16126734,16542361,17163642,17235714,18257331,18333451,19346152,21352862,21544941,21743524,23187129

%N Numbers n such that sigma(n) = product of the squares of the decimal digits of n.

%H Giovanni Resta, <a href="/A068572/b068572.txt">Table of n, a(n) for n = 1..1000</a>

%e sigma(541443) = 921600 = 5^2 * 4^2 * 1^2 *4^2* 4^2 *3^2, so 541443 is a term of the sequence.

%t f[n_] := Module[{a, l}, a = IntegerDigits[n]; l = Length[a]; Product[a[[i]], {i, 1, l}]^2]; Do[If[f[n] == DivisorSigma[1, n], Print[n]], {n, 2, 10^6}]

%t Select[Range[25*10^6],DivisorSigma[1,#]==(Times@@IntegerDigits[#])^2&] (* _Harvey P. Dale_, Aug 29 2014 *)

%Y Cf. A058627.

%K nonn,base

%O 1,2

%A _Joseph L. Pe_, Mar 26 2002

%E Added missing first term and a(14)-a(48) from _Donovan Johnson_, Nov 20 2010