login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of exp(sqrt(Pi)).
3

%I #19 Sep 08 2022 08:45:05

%S 5,8,8,5,2,7,7,2,5,0,0,1,8,0,2,8,8,7,6,6,1,1,7,6,1,8,5,3,4,0,5,7,6,9,

%T 8,0,3,9,9,0,6,9,8,6,1,8,9,8,5,9,2,4,3,3,9,3,5,1,9,8,3,4,0,7,6,2,9,3,

%U 4,2,2,5,0,2,0,2,7,1,6,2,2,1,9,4,3,3,3,8,4,5,4,4,0,2,1,8,4,1,1,0,1,0,5,5,0

%N Decimal expansion of exp(sqrt(Pi)).

%H G. C. Greubel, <a href="/A068470/b068470.txt">Table of n, a(n) for n = 1..5000</a>

%e 5.8852772500180288766117618534057698039906986189859...

%p evalf[120](exp(sqrt(Pi))); # _Muniru A Asiru_, Nov 28 2018

%t RealDigits[Exp[Sqrt[Pi]],10,120][[1]] (* _Harvey P. Dale_, Aug 22 2012 *)

%o (PARI) default(realprecision, 100); exp(sqrt(Pi)) \\ _G. C. Greubel_, Jan 12 2017

%o (Magma) SetDefaultRealField(RealField(100)); R:=RealField(); Exp(Sqrt(Pi(R))); // _G. C. Greubel_, Nov 27 2018

%o (Sage) numerical_approx(exp(sqrt(pi)), digits=100) # _G. C. Greubel_, Nov 27 2018

%Y Cf. A002161 (sqrt(Pi)), A039661 (exp(Pi)).

%K cons,easy,nonn

%O 1,1

%A _Benoit Cloitre_, Mar 10 2002