login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Factorial expansion of sqrt(Pi) = Sum_{n>0} a(n)/n!.
3

%I #22 Sep 08 2022 08:45:05

%S 1,1,1,2,2,4,1,1,3,0,5,10,6,8,12,0,10,0,12,9,6,12,22,21,24,3,14,21,13,

%T 24,21,11,8,22,27,3,8,1,36,21,27,15,2,41,22,34,8,0,4,8,39,48,27,38,22,

%U 0,23,49,19,27,29,28,40,33,21,62,7,67,33,8,30,18,60,73,61,72,42,59,22

%N Factorial expansion of sqrt(Pi) = Sum_{n>0} a(n)/n!.

%H G. C. Greubel, <a href="/A068450/b068450.txt">Table of n, a(n) for n = 1..10000</a>

%e sqrt(Pi) = 1 + 1/2! + 1/3! + 2/4! + 2/5! + 4/6! + 1/7! + ...

%t Table[If[n == 1, Floor[Sqrt[Pi]], Floor[n!*Sqrt[Pi]] - n*Floor[(n - 1)!*Sqrt[Pi]]], {n, 1, 50}] (* _G. C. Greubel_, Mar 21 2018 *)

%o (PARI) default(realprecision, 250); for(n=1,30, print1(if(n==1, floor(sqrt(Pi)), floor(n!*sqrt(Pi)) - n*floor((n-1)!*sqrt(Pi))), ", ")) \\ _G. C. Greubel_, Mar 21 2018

%o (PARI) vector(30,n,if(n>1,t=t%1*n,t=sqrt(Pi))\1) \\ _M. F. Hasler_, Nov 25 2018

%o (Magma) SetDefaultRealField(RealField(250)); R:= RealField(); [Floor(Sqrt(Pi(R)))] cat [Floor(Factorial(n)*Sqrt(Pi(R))) - n*Floor(Factorial((n-1))*Sqrt(Pi(R))) : n in [2..30]]; // _G. C. Greubel_, Mar 21 2018

%o (Sage)

%o def A068450(n):

%o if (n==1): return floor(sqrt(pi))

%o else: return expand(floor(factorial(n)*sqrt(pi)) - n*floor(factorial(n-1)*sqrt(pi)))

%o [A068450(n) for n in (1..80)] # _G. C. Greubel_, Nov 27 2018

%Y Cf. A075874, A002161 (decimal expansion).

%K nonn

%O 1,4

%A _Benoit Cloitre_, Mar 10 2002

%E Keyword cons removed by _R. J. Mathar_, Jul 23 2009