login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that sigma(k) > 4*k.
9

%I #36 Feb 13 2021 05:56:28

%S 27720,50400,55440,60480,65520,75600,83160,85680,90720,95760,98280,

%T 100800,105840,110880,115920,120120,120960,128520,131040,138600,

%U 141120,143640,151200,163800,166320,171360,176400,180180,181440,184800,191520

%N Numbers k such that sigma(k) > 4*k.

%C This sequence is of positive density, see for example Davenport. The density is between 0.000176 and 0.004521 according to the McDaniel College link. - _Charles R Greathouse IV_, Sep 07 2012

%C From _Amiram Eldar_, Feb 13 2021: (Start)

%C Behrend (1933) found the bounds (0.00003, 0.025) for the asymptotic density.

%C Wall et al. (1972) found the bounds (0.0001, 0.0147).

%C Using Deléglise's method the upper bound for the density found by McDaniel College is 0.000679406. (End)

%D Harold Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., No. 6 (1933), pp. 830-837.

%H Amiram Eldar, <a href="/A068404/b068404.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)

%H Felix Behrend, <a href="https://eudml.org/doc/204583">Über numeri abundantes II</a>, Preuss. Akad. Wiss. Sitzungsber., Vol. 6 (1933), pp. 280-293; <a href="http://mcdanielabundancy.wdfiles.com/local--files/bounds-for-abundancy-density/Behrend.pdf">alternative link</a>.

%H Marc Deléglise, <a href="https://doi.org/10.1080/10586458.1998.10504363">Bounds for the Density of Abundant Integers</a>, Experimental Mathematics, Vol. 7, No. 2 (1998), pp. 137-143.

%H Richard Laatsch, <a href="http://www.jstor.org/stable/2690424">Measuring the Abundancy of Integers</a>, Mathematics Magazine, Vol. 59, No. 2 (1986), pp. 84-92, <a href="https://isidore.co/misc/Physics%20papers%20and%20books/Zotero/storage/99C5C5IC/Laatsch%20-%201986%20-%20Measuring%20the%20Abundancy%20of%20Integers.pdf">alternative link</a>.

%H Gordon L. Miller and Mary T. Whalen, <a href="https://doi.org/10.1111/j.1949-8594.1995.tb15776.x">Multiply Abundant Numbers</a>, School Science and Mathematics, Volume 95, Issue 5 (May 1995), pp. 256-259.

%H Summer 2010 research group on Abundancy, <a href="http://mcdanielabundancy.wikidot.com/result-page">Abundancy Bounds 2010</a>, McDaniel College, 2010.

%H Charles R. Wall, Phillip L. Crews and Donald B. Johnson, <a href="https://doi.org/10.1090/S0025-5718-1972-0327700-7 ">Density Bounds for the Sum of Divisors Function</a>, Mathematics of Computation, Vol. 26, No. 119 (1972), pp. 773-777; <a href="https://doi.org/10.1090/S0025-5718-1977-0427251-X">Errata</a>, Vol. 31, No. 138 (1977), p. 616.

%F A001221(a(n)) >= 4 (Laatsch, 1986). - _Amiram Eldar_, Nov 07 2020

%t Select[Range[27720,9!,60], 4*#<Plus@@Divisors[ # ]&] (* _Vladimir Joseph Stephan Orlovsky_, Apr 21 2010 *)

%Y Cf. A068403, A001221, A215264.

%Y Cf. A027687 (4-perfect numbers).

%K nonn

%O 1,1

%A _Benoit Cloitre_, Mar 02 2002