login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068342
a(1) = 1; a(n+1) = (product{k|n} a(k)) (sum{j|n} 1/a(j)), where both the product and sum are over the positive divisors of n.
1
1, 1, 2, 3, 7, 8, 42, 43, 304, 914, 13717, 13718, 1948004, 1948005, 165580467, 3808350755, 1157738629649, 1157738629650, 14800530641450464, 14800530641450465, 703750431470328179479, 90080055228202006973396, 2471346315185722061315132977
OFFSET
1,3
LINKS
EXAMPLE
a(7) = a(1) a(2) a(3) a(6) (1/a(1) + 1/a(2) + 1/a(3) + 1/a(6)) = 1 *1 *2 *8 *(1 + 1 + 1/2 + 1/8) = 42.
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=1, 1, (l->
mul(a(i), i=l)*add(1/a(i), i=l))(divisors(n-1)))
end:
seq(a(n), n=1..25); # Alois P. Heinz, May 22 2015
MATHEMATICA
a[1] = 1;
a[n_] := a[n] = With[{k = a /@ Divisors[n-1]}, (Times @@ k)*Total[1/k]];
Array[a, 25] (* Jean-François Alcover, Mar 28 2017 *)
CROSSREFS
Sequence in context: A056433 A288628 A064669 * A038034 A103173 A378270
KEYWORD
nonn
AUTHOR
Leroy Quet, Feb 27 2002
STATUS
approved