login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n+1) = 1 + sum{k|n} a(k), sum is over the positive divisors, k, of n.
12

%I #26 Jun 09 2021 11:14:03

%S 1,2,4,6,10,12,20,22,32,38,52,54,80,82,106,122,154,156,208,210,268,

%T 294,350,352,454,466,550,588,700,702,876,878,1032,1090,1248,1280,1548,

%U 1550,1762,1848,2138,2140,2530,2532,2888,3042,3396,3398,3974,3996,4502

%N a(1) = 1; a(n+1) = 1 + sum{k|n} a(k), sum is over the positive divisors, k, of n.

%C Equals row sums of triangle A160182. - _Gary W. Adamson_, May 03 2009

%H Reinhard Zumkeller, <a href="/A068336/b068336.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f. A(x) satisfies: A(x) = x * (1 + x / (1 - x) + A(x) + A(x^2) + A(x^3) + ...). - _Ilya Gutkovskiy_, Jun 09 2021

%e a(7) = 1 + a(1) + a(2) + a(3) + a(6) = 1 + 1 + 2 + 4 + 12 = 20.

%t a[1] = 1; a[n_] := a[n] = 1 + Sum[a[k], {k, Divisors[n-1]}]; Table[ a[n], {n, 1, 51}] (* _Jean-François Alcover_, Dec 20 2011 *)

%o (Haskell)

%o a068336 n = a068336_list !! (n-1)

%o a068336_list = 1 : f 1 where

%o f x = (1 + sum (map a068336 $ a027750_row x)) : f (x + 1)

%o -- _Reinhard Zumkeller_, Dec 20 2014

%o (PARI) a(n) = if (n==1, 1, 1+ sumdiv(n-1, d, a(d))); \\ _Michel Marcus_, Oct 30 2017

%Y Cf. A003238, A027750, A160182.

%K nonn

%O 1,2

%A _Leroy Quet_, Feb 27 2002