login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Chebyshev T-polynomials T(n,15) with Diophantine property.
7

%I #48 Dec 07 2019 12:18:22

%S 1,15,449,13455,403201,12082575,362074049,10850138895,325142092801,

%T 9743412645135,291977237261249,8749573705192335,262195233918508801,

%U 7857107443850071695,235451028081583642049,7055673735003659189775,211434761022028192051201

%N Chebyshev T-polynomials T(n,15) with Diophantine property.

%C Let (x_n, y_n) be n-th solution to the Pell equation x^2 = 14*y^2 + 1. Sequence gives {x_n}.

%C Numbers n such that 14*(n^2-1) is a square. - _Vincenzo Librandi_, Aug 08 2010

%C Except for the first term, positive values of x (or y) satisfying x^2 - 30xy + y^2 + 224 = 0. - _Colin Barker_, Feb 24 2014

%H Indranil Ghosh, <a href="/A068203/b068203.txt">Table of n, a(n) for n = 0..676</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H H. W. Lenstra Jr., <a href="http://www.ams.org/notices/200202/fea-lenstra.pdf">Solving the Pell Equation</a>, Notices of the AMS, Vol.49, No.2, Feb. 2002, p.182-192.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (30,-1).

%F x_n + y_n*sqrt(14) = (x_1 + y_1*sqrt(14))^n.

%F a(n) = (-15/2-2*sqrt(14))*(-1/(-15-4*sqrt(14)))^n/(-15-4*sqrt(14))+(2*sqrt(14)-15/2)*(-1/(-15+4*sqrt(14)))^n/(-15+4*sqrt(14)). Recurrence: a(n) = 30*a(n-1)-a(n-2). G.f.: (1-15*x)/(1-30*x+x^2). - _Vladeta Jovovic_, Mar 25 2002

%F a(n) = T(n, 15)= (S(n, 30)-S(n-2, 30))/2 = S(n, 30)-15*S(n-1, 30) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 30)=A097313(n). - _Wolfdieter Lang_, Aug 31 2004

%F a(n) = sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*15)^(n-2*k), k=0..floor(n/2)), n>=1. - _Wolfdieter Lang_, Aug 31 2004

%F a(n) = cosh(2*n*arcsinh(sqrt(7))). - _Herbert Kociemba_, Apr 24 2008

%p Digits := 1000: q := seq(floor(evalf(((15+4*sqrt(14))^n+(15-4*sqrt(14))^n)/2)+0.1), n=1..30);

%t a[0] = 1; a[1] = 15; a[n_] := 30a[n-1] - a[n-2]; Table[a[n], {n,0,16}] (* or *) LinearRecurrence[{30,-1}, {1,15}, 17] (* _Indranil Ghosh_, Feb 18 2017 *)

%o (Sage) [lucas_number2(n,30,1)/2 for n in range(0,15)] # _Zerinvary Lajos_, Jun 27 2008

%Y a(n)=sqrt(1 + 224*A097313(n-1)^2), n>=0. Cf. A068204.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Mar 24 2002

%E More terms from _Sascha Kurz_ and _Vladeta Jovovic_, Mar 25 2002

%E Additional term from _Colin Barker_, Feb 24 2014