The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068179 Product_{i=1..3} (i+x) / Product_(i=1..3} (i-x) = Sum_{n>=0} (a(n)/b(n))*x^n. 1
 1, 11, 121, 971, 6721, 43331, 269641, 1648091, 9981841, 60176051, 361921561, 2174145611, 13052763361, 78340331171, 470113403881, 2820895001531, 16926014399281, 101558020876691, 609353931324601, 3656141011383851 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If n mod 10 == 1, 2, or 4 then a(n)==0 (mod 11). - Bruno Berselli, Aug 26 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (11,-36,36). FORMULA b(n) = A026532(2*n-1) for n >= 1. Lim_{n -> infinity} a(n)/b(n) = 12. From Yalcin Aktar, Aug 10 2011: (Start) a(n) = 5*2^(n+1) + 6^(n+1) - 5*3^(n+1). a(n)/b(n) = 12 - 30/2^n + 20/3^n. General case: lim_{m-->+oo} a_n(m)/b_n(m) = A002378(n) where Product_{i=1..d} (x+i)/Product_{i=1..d} (i-x) = Sum_{n>=0} (a_d(n)/b_d(n))*x^n) = ((-1)^d) * (1 + Sum_{j>=1} (Sum_{k=1..d} ((-1)^k/k^j) * binomial(2*k,k) * binomial(d+k,2*k)) * x^j). (End) G.f.: (1+36*x^2)/((1-2*x)*(1-3*x)*(1-6*x)). - Bruno Berselli, Aug 26 2011 E.g.f.: 10*exp(2*x) - 15*exp(3*x) + 6*exp(6*x). - G. C. Greubel, Nov 10 2018 MATHEMATICA Table[5*2^(n+1)+6^(n+1)-5*3^(n+1), {n, 0, 20}] (* G. C. Greubel, Nov 10 2018 *) LinearRecurrence[{11, -36, 36}, {1, 11, 121}, 20] (* Harvey P. Dale, Aug 16 2021 *) PROG (MAGMA) [5*2^(n+1)+6^(n+1)-5*3^(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 29 2011 (PARI) vector(20, n, n--; 5*2^(n+1)+6^(n+1)-5*3^(n+1)) \\ G. C. Greubel, Nov 10 2018 (Python) for n in range(0, 20): print(5*2**(n+1)+6**(n+1)-5*3**(n+1), end=', ') # Stefano Spezia, Nov 12 2018 CROSSREFS Cf. A026532. Sequence in context: A223633 A223616 A223665 * A293891 A218262 A006940 Adjacent sequences:  A068176 A068177 A068178 * A068180 A068181 A068182 KEYWORD nonn,frac,easy AUTHOR Benoit Cloitre, Mar 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 1 22:23 EDT 2022. Contains 354984 sequences. (Running on oeis4.)