The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068166 Define an increasing sequence as follows. Given the first term, called the seed (which need not share the property of the remaining terms), subsequent terms are obtained by inserting at least one digit in the previous term so as to obtain the smallest number with the specified property. This is the prime sequence with the seed a(1) = 1. 10
 1, 11, 101, 1013, 10103, 100103, 1001003, 10010023, 100010023, 1000100239, 10001000239, 100010002039, 1000100020319, 10001000200319, 100001000200319, 1000010002000319, 10000100002000319, 100001000020003109, 1000010000200031039, 10000100002000310329 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..300 EXAMPLE The primes obtained by inserting/placing a digit in a(2) = 11 are 101, 113, 131, 181, 191, 211, 311, etc. and the smallest is 101, hence a(3) = 101. MAPLE with(numtheory): P:=proc(q, h) local a, b, c, d, j, k, n; a:=h; print(a); for n from 1 to q do  b:=10^100; d:=0; for j from 0 to 9 do for k from 0 to ilog10(a)+1 do if k=0 then c:=10*a+j; else if (a mod 10^k)>0 then c:=trunc(a/10^(k))*10^(k+1)+j*10^(ilog10(a mod 10^k)+1)+(a mod 10^k); fi; fi; if c>a then if sigma(c)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 21:35 EDT 2021. Contains 343808 sequences. (Running on oeis4.)