login
A068112
Denominator of coefficient of (-x^2)^n in F(x)*F(-x) where F(x)=sum(k>=0,x^k/(k!)^3).
1
1, 4, 768, 1555200, 20808990720, 9029615616000000, 1415988202438656000000, 536259842454308939366400000, 7188611938994779905746534400000000, 503281313253202450261043834781696000000
OFFSET
0,2
REFERENCES
Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Hypergeometric series, p. 62.
FORMULA
F(x)*F(-x)=sum(n>=0, (3n)!/(n!)^3/((2n)!)^3*(-x^2)^n)
MATHEMATICA
F[x_] := HypergeometricPFQ[{}, {1, 1}, x]; F[x]*F[-x] + O[x]^20 // CoefficientList[#, x^2]& // Denominator (* Jean-François Alcover, Nov 17 2016 *)
CROSSREFS
Cf. A068113.
Sequence in context: A308141 A284813 A306254 * A007725 A102195 A114766
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Mar 21 2002
STATUS
approved