login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of 355 / 113.
9

%I #63 Jan 13 2025 15:41:51

%S 3,1,4,1,5,9,2,9,2,0,3,5,3,9,8,2,3,0,0,8,8,4,9,5,5,7,5,2,2,1,2,3,8,9,

%T 3,8,0,5,3,0,9,7,3,4,5,1,3,2,7,4,3,3,6,2,8,3,1,8,5,8,4,0,7,0,7,9,6,4,

%U 6,0,1,7,6,9,9,1,1,5,0,4,4,2,4,7,7,8,7,6,1,0,6,1,9,4,6,9,0,2,6,5,4,8,6,7,2,5,6,6,3,7,1,6,8,1,4,1,5,9,2

%N Decimal expansion of 355 / 113.

%C This is an approximation to Pi. It is accurate to 0.00000849%.

%C 355/113 is the third convergent of the continued fraction expansion of Pi (A001203). - _Lekraj Beedassy_, Jun 18 2003

%C In one of Ramanujan's papers, a note at the bottom states that "If the area of the circle be 140,000 square miles, then RD [RD = d/2 * Sqrt(355/113) = r*Sqrt(Pi), very nearly] is greater than the true length by about an inch."

%C This approximation of Pi was suggested by the astronomer Tsu Chúng-chih (A.D. 430 - 501) (see Gullberg). - _Stefano Spezia_, Jan 13 2025

%D Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 88.

%D Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi, p. 91.

%D Ramanujan's papers, "Squaring the circle", Journal of the Indian Mathematical Society, V, 1913, 132. - _Robert G. Wilson v_, May 30 2014

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.

%H Dario Castellanos, <a href="http://www.jstor.org/stable/2690037">The ubiquitous pi</a>, Math. Mag., 61 (1988), 67-98 and 148-163. [_N. J. A. Sloane_, Mar 24 2012]

%H Dale, <a href="http://www.oocities.org/siliconvalley/pines/5945/facts.html">Fun and interesting facts about Pi</a>.

%H <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a>.

%H <a href="/index/Rec#order_57">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).

%F a(n) = a(n - 112) for n > 113. - _Jeppe Stig Nielsen_, Dec 14 2019

%e 3.141592920353982300884955752212389380530973451327433628318584...

%p Digits:=100: evalf(355/113); # _Wesley Ivan Hurt_, Mar 14 2015

%t Flatten[RealDigits[355/113, 10, 100]] (* _Wesley Ivan Hurt_, Mar 14 2015 *)

%o (PARI) 355/113. \\ _Charles R Greathouse IV_, May 30 2014

%o (PARI) a(n) = if(n==1, 3, digits(16*10^112 \ 113)[(n-2) % 112 + 1]) \\ _Jeppe Stig Nielsen_, Dec 14 2019

%Y Cf. A068028, A068089, A002485, A002486, A046965, A046947, A083871.

%K easy,nonn,cons,changed

%O 1,1

%A _Nenad Radakovic_, Mar 22 2002

%E More terms from _Sascha Kurz_, Mar 23 2002

%E Terms a(106) and beyond from _Jeppe Stig Nielsen_, Dec 14 2019