login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068074
a(n) = Sum_{d|n} (-1)^d*2^omega(n/d) where omega(x) is the number of distinct prime factors in the factorization of x.
1
-1, -1, -3, 1, -3, -3, -3, 3, -5, -3, -3, 3, -3, -3, -9, 5, -3, -5, -3, 3, -9, -3, -3, 9, -5, -3, -7, 3, -3, -9, -3, 7, -9, -3, -9, 5, -3, -3, -9, 9, -3, -9, -3, 3, -15, -3, -3, 15, -5, -5, -9, 3, -3, -7, -9, 9, -9, -3, -3, 9, -3, -3, -15, 9, -9, -9, -3, 3, -9, -9, -3, 15, -3, -3, -15, 3, -9, -9, -3, 15, -9, -3, -3, 9, -9, -3, -9, 9, -3
OFFSET
1,3
REFERENCES
G. Tenenbaum and Jie Wu, Cours specialies No. 2: "Exercices corrigés de théorie analytique et probabiliste des nombres", Collection SMF, chap. II.7.1, p. 105.
LINKS
FORMULA
Asymptotic formula: Sum_{k=1..n} a(k)/k = -C*log(n)^2 with C = 3*log(2)/Pi^2.
a(n) = -tau(n^2) for odd n and 2*tau(n^2/4) - tau(n^2) for even n. b(n) = abs(a(n)) is multiplicative with b(2^e) = abs(2*e-3) and b(p^e) = 2*e+1 for an odd prime p. - Vladeta Jovovic, Apr 25 2002
a(n) = if n odd then -A048691(n) else 2*A048691(n/2) - A048691(n). - Reinhard Zumkeller, Jul 12 2012
MATHEMATICA
a[n_?OddQ] := -DivisorSigma[0, n^2]; a[n_?EvenQ] := 2*DivisorSigma[0, n^2/4] - DivisorSigma[0, n^2]; Table[a[n], {n, 1, 89}] (* Jean-François Alcover, Nov 15 2011, after Vladeta Jovovic *)
PROG
(Haskell)
a068074 n | odd n = - a048691 n
| otherwise = 2 * a048691 (n `div` 2) - a048691 n
-- Reinhard Zumkeller, Jul 12 2012
(PARI) a(n) = sumdiv(n, d, (-1)^d*2^omega(n/d)); \\ Michel Marcus, Oct 08 2017
CROSSREFS
Cf. A048691.
Sequence in context: A210146 A354198 A233654 * A063195 A334070 A025796
KEYWORD
easy,nice,sign
AUTHOR
Benoit Cloitre, Apr 14 2002
STATUS
approved