OFFSET
1,2
COMMENTS
Intersection of A002113 and A067031. Every palindrome with an even number of digits is of the form k + reverse(k), for example 123321 = 123000 + 000321, so the sequence has no terms with an even number of digits.
It seems that the terms follow a strict pattern: x1x', x3x', x5x', x7x', x9x', y1y', y3y', y5y', y7y', y9y' and so on. x' is reverse(x). Apart from the first 5 terms in the sequence, the surrounding terms (x and y) simply iterate over the positive integers. - Dmitry Kamenetsky, Mar 10 2017
Every palindrome with an odd number of digits is of the form k + reverse(k) if the central digit is even, for example 1234321 = 1232000 + 0002321, so no term with an odd number of digits has an even central digit. - A.H.M. Smeets, Feb 01 2019
LINKS
Michel Marcus, Table of n, a(n) for n = 1..500
EXAMPLE
9 belongs to this sequence, since there is no k such that k + reverse(k) = 9 (cf. A067031).
PROG
(PARI) isok(n) = {if (Pol(d=digits(n)) == Polrev(d), for (k=1, n-1, if (k + fromdigits(Vecrev(digits(k))) == n, return (0)); ); 1; ); } \\ Michel Marcus, Mar 12 2017
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Klaus Brockhaus, Feb 15 2002
STATUS
approved