login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068061
Palindromic numbers j that are not of the form k + reverse(k) for any k.
2
1, 3, 5, 7, 9, 111, 131, 151, 171, 191, 212, 232, 252, 272, 292, 313, 333, 353, 373, 393, 414, 434, 454, 474, 494, 515, 535, 555, 575, 595, 616, 636, 656, 676, 696, 717, 737, 757, 777, 797, 818, 838, 858, 878, 898, 919, 939, 959, 979, 999, 10101, 10301, 10501
OFFSET
1,2
COMMENTS
Intersection of A002113 and A067031. Every palindrome with an even number of digits is of the form k + reverse(k), for example 123321 = 123000 + 000321, so the sequence has no terms with an even number of digits.
It seems that the terms follow a strict pattern: x1x', x3x', x5x', x7x', x9x', y1y', y3y', y5y', y7y', y9y' and so on. x' is reverse(x). Apart from the first 5 terms in the sequence, the surrounding terms (x and y) simply iterate over the positive integers. - Dmitry Kamenetsky, Mar 10 2017
Every palindrome with an odd number of digits is of the form k + reverse(k) if the central digit is even, for example 1234321 = 1232000 + 0002321, so no term with an odd number of digits has an even central digit. - A.H.M. Smeets, Feb 01 2019
LINKS
EXAMPLE
9 belongs to this sequence, since there is no k such that k + reverse(k) = 9 (cf. A067031).
PROG
(PARI) isok(n) = {if (Pol(d=digits(n)) == Polrev(d), for (k=1, n-1, if (k + fromdigits(Vecrev(digits(k))) == n, return (0)); ); 1; ); } \\ Michel Marcus, Mar 12 2017
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Klaus Brockhaus, Feb 15 2002
STATUS
approved