login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of subsets of {1,2,3,...,n} that sum to 0 mod 17.
2

%I #16 Aug 19 2024 02:02:59

%S 1,1,1,1,1,1,3,8,15,30,60,120,241,482,964,1928,3856,7712,15422,30842,

%T 61682,123362,246722,493446,986896,1973790,3947580,7895160,15790320,

%U 31580642,63161284,126322568,252645136,505290272,1010580544,2021161084

%N Number of subsets of {1,2,3,...,n} that sum to 0 mod 17.

%F Empirical G.f.: -(2*x^17-x^12+x^8-2*x^7-x^6+x^5+x^4+x^3+x^2+x-1) / ((2*x-1)*(2*x^17-1)). - _Colin Barker_, Dec 22 2012

%o (PARI) {A068038(n)=local(v,v1);v=vector(17);v[1]=1;for(i=1,n,v1=vector(17);for(j=0,16,v1[j+1]=v[j+1]+v[(j-i)%17+1]);v=v1);v[1]} \\ _Max Alekseyev_, Jul 23 2005

%Y 17th row of A068009.

%K nonn

%O 0,7

%A _Antti Karttunen_, Feb 11 2002

%E Rechecked by _Max Alekseyev_, Jul 23 2005