login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of subsets of {1,2,3,...,n} that sum to 0 mod 15.
1

%I #7 Aug 27 2018 14:54:25

%S 1,1,1,1,1,2,5,9,18,36,70,138,276,548,1096,2192,4374,8744,17486,34958,

%T 69916,139830,279630,559260,1118520,2236988,4473964,8947920,17895736,

%U 35791472,71582944,143165660,286331296,572662588,1145324764,2290649528

%N Number of subsets of {1,2,3,...,n} that sum to 0 mod 15.

%F Empirical G.f.: -(8*x^23 +4*x^21 -8*x^20 +4*x^19 -4*x^18 +2*x^17 -4*x^16 +2*x^15 -8*x^14 +2*x^12 +8*x^11 +4*x^10 +4*x^9 -6*x^8 -3*x^7 -5*x^6 -x^4 +3*x^3 +x^2 +x -1) / ((2*x-1) * (2*x^3-1) * (2*x^5-1) * (2*x^15-1)). - _Colin Barker_, Dec 22 2012

%Y 15th row of A068009.

%K nonn

%O 0,6

%A _Antti Karttunen_, Feb 11 2002