login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=8.
2

%I #7 Nov 04 2016 09:53:32

%S 1,511,9841,174251,488281,6017605,6725601,50955971,72636421,276964061,

%T 235794769,2234070293,883708281,3698977205,5148057541,13910980083,

%U 7411742281,46982039533,17927094321,99343345101,69493620405

%N Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=8.

%F 1/8!*(sigma[1](n)^8 + 28*sigma[1](n)^6*sigma[2](n) + 112*sigma[1](n)^5*sigma[3](n) + 210*sigma[1](n)^4*sigma[2](n)^2 + 420*sigma[1](n)^4*sigma[4](n) + 1120*sigma[1](n)^3*sigma[2](n)*sigma[3](n) + 420*sigma[1](n)^2*sigma[2](n)^3 + 1344*sigma[1](n)^3*sigma[5](n) + 2520*sigma[1](n)^2*sigma[2](n)*sigma[4](n) + 1120*sigma[1](n)^2*sigma[3](n)^2 + 1680*sigma[1](n)*sigma[2](n)^2*sigma[3](n) + 105*sigma[2](n)^4 + 3360*sigma[1](n)^2*sigma[6](n) + 4032*sigma[1](n)*sigma[2](n)*sigma[5](n) + 3360*sigma[1](n)*sigma[3](n)*sigma[4](n) + 1260*sigma[2](n)^2*sigma[4](n) + 1120*sigma[2](n)*sigma[3](n)^2 + 5760*sigma[7](n)*sigma[1](n) + 3360*sigma[2](n)*sigma[6](n) + 2688*sigma[3](n)*sigma[5](n) + 1260*sigma[4](n)^2 + 5040*sigma[8](n)).

%t CIP8 = CycleIndexPolynomial[SymmetricGroup[8], Array[x, 8]]; a[n_] := CIP8 /. x[k_] -> DivisorSigma[k, n]; Array[a, 21] (* _Jean-François Alcover_, Nov 04 2016 *)

%Y Cf. A067692, A068020-A068024, A068026-A068027, A000203, A001157-A001160, A013954-A013956.

%K nonn

%O 1,2

%A _Vladeta Jovovic_, Feb 08 2002