login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Engel expansion of sqrt(Pi/2).
1

%I #9 Jan 12 2017 14:56:37

%S 1,4,76,134,213,1649,1955,2041,32363,217167,760577,1633080,6412486,

%T 24932290,25544312,376841489,426956719,472747939,765965856,2708004694,

%U 5814287795,14630348817,21857959576,92077240148,184486528542

%N Engel expansion of sqrt(Pi/2).

%H G. C. Greubel, <a href="/A067921/b067921.txt">Table of n, a(n) for n = 1..1000</a>

%t EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@

%t NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; EngelExp[N[Sqrt[Pi/2], 7!], 50] (* _G. C. Greubel_, Jan 12 2017 *)

%o (PARI) : s=sqrt(asin(1)); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );

%Y See A006784 for explanation of Engel expansions.

%K easy,nonn

%O 1,2

%A _Benoit Cloitre_, Mar 03 2002