login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067919 Engel expansion of sin(1). 3
2, 2, 3, 11, 14, 27, 28, 66, 212, 231, 552, 2842, 3774, 6038, 6784, 10950, 32948, 78591, 97875, 98342, 123569, 139837, 159698, 1102838, 3256476, 20329622, 34385124, 60999878, 82669919, 85820365, 389915995, 4274338879, 18907353107, 62875944378, 74931184173 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..35.

EXAMPLE

sin(1) = 0.84147... = A049469 has the Engel expansion 1/2 + 1/(2*2) + 1/(2*2*3) + ...

MATHEMATICA

EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[Sin[1], 6! ], 50] (* Vladimir Joseph Stephan Orlovsky, Jun 13 2009 *)

PROG

(PARI) : s=sin(1); for(i=1, 30, s=s*ceil(1/s)-1; print1(ceil(1/s), ", "); );

CROSSREFS

See A006784 for explanation of Engel expansions.

Cf. A049469, A084651, A084652.

Sequence in context: A067579 A019143 A084650 * A157301 A143931 A143933

Adjacent sequences:  A067916 A067917 A067918 * A067920 A067921 A067922

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Mar 03 2002

EXTENSIONS

a(1) inserted by Hauke Worpel (hw1(AT)email.com), Jun 01 2003

Edited by N. J. A. Sloane, Nov 01 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 12:28 EST 2021. Contains 349596 sequences. (Running on oeis4.)