Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 Jun 03 2024 12:16:27
%S 2,4,6,12,14,16,18,20,22,30,32,34,36,38,40,42,52,54,56,58,60,66,68,70,
%T 72,78,84,86,88,90,92,94,96,102,104,106,108,110,112,114,128,130,132,
%U 138,140,142,144,150,156,158,160,162,164,166,178,180,182,184,186,192,194,196,198
%N Positive integers x satisfying x^2 - D*y^2 = 1 for a unique integer D.
%C D is unique iff x^2 - 1 is squarefree, in which case it follows with necessity that D=x^2-1 and y=1.
%C All terms are even. A014574 is a subsequence.
%C Conjecture: All terms of A002110 > 1 are a subsequence. - _Griffin N. Macris_, Apr 11 2016
%C All n such that n+1 and n-1 are in A056911. - _Robert Israel_, Apr 12 2016
%C The asymptotic density of this sequence is Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - _Amiram Eldar_, Feb 25 2021
%H T. D. Noe, <a href="/A067874/b067874.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = 2*A272799(n). - _Juri-Stepan Gerasimov_, Jan 17 2017
%p select(t -> numtheory:-issqrfree(t^2-1), [seq(n,n=2..1000,2)]); # _Robert Israel_, Apr 12 2016
%t Select[Range[200], SquareFreeQ[#^2-1]&] (* _Vladimir Joseph Stephan Orlovsky_, Oct 26 2009 *)
%o (Magma) [n: n in [1..110] | IsSquarefree(n-1) and IsSquarefree(n+1)]; // _Juri-Stepan Gerasimov_, Jan 17 2017
%o (Python)
%o from itertools import count, islice
%o from sympy import factorint
%o def A067874_gen(startvalue=2): # generator of terms >= startvalue
%o return filter(lambda k:max(factorint(k-1).values(),default=1)==1 and max(factorint(k+1).values())==1, count(max(startvalue+(startvalue&1),2),2))
%o A067874_list = list(islice(A067874_gen(),20)) # _Chai Wah Wu_, Apr 24 2024
%Y Cf. A002110, A005117, A014574, A056911, A065474, A226993, A272799, A280892.
%K nice,nonn
%O 1,1
%A _Lekraj Beedassy_, Feb 25 2002
%E Corrected and extended by _Max Alekseyev_, Apr 26 2009
%E Further edited by _Max Alekseyev_, Apr 28 2009