login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least m > 0 for which m*n^2 + 1 is a square.
6

%I #27 Dec 22 2021 02:18:41

%S 3,2,7,3,23,8,47,15,79,24,119,2,167,48,3,63,287,80,359,6,88,120,527,

%T 28,623,168,727,12,839,44,959,255,216,288,8,20,1367,360,19,77,1679,22,

%U 1847,30,208,528,2207,7,2399,624,128,42,2807,728,696,3,160,840,3479,11

%N Least m > 0 for which m*n^2 + 1 is a square.

%C Least m > 0 for which x^2 - m*y^2 = 1 has a solution with y = n.

%C For n > 1, a(n) <= n^2-2. - _Chai Wah Wu_, Jan 26 2016

%H T. D. Noe and Chai Wah Wu, <a href="/A067872/b067872.txt">Table of n, a(n) for n = 1..10000</a> n = 1..500 from T. D. Noe

%F For n a power of an odd prime, a(n) = n^2 - 2. For n twice a power of an odd prime, a(n) = (n/2)^2 - 1. - _T. D. Noe_, Sep 13 2007

%e a(4)=3, based on 3*4^2 + 1 = 7^2.

%t a[n_] := For[m=1, True, m++, If[IntegerQ[Sqrt[m*n^2+1]], Return[m]]]; Table[a[n], {n, 100}]

%t lm[n_]:=Module[{m=1},While[!IntegerQ[Sqrt[m n^2+1]],m++];m]; Array[lm,60] (* _Harvey P. Dale_, Feb 24 2013 *)

%o (Haskell)

%o a067872 n = (until ((== 1) . a010052 . (+ 1)) (+ nn) nn) `div` nn

%o where nn = n ^ 2

%o -- _Reinhard Zumkeller_, Jun 28 2013

%o (Python)

%o def A067872(n):

%o y, x, n2 = n*(n+2), 2*n+3, n**2

%o m, r = divmod(y,n2)

%o while r:

%o y += x

%o x += 2

%o m, r = divmod(y,n2)

%o return m # _Chai Wah Wu_, Jan 25 2016

%Y Cf. A033318, A068310.

%Y Cf. A010052.

%K nice,nonn

%O 1,1

%A _Lekraj Beedassy_, Feb 25 2002

%E Edited by _Dean Hickerson_, Mar 19 2002