login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067788
Numbers n such that sigma(n) - phi(n) = pi(n).
0
1, 3, 49, 437, 11509, 3029573, 15714799, 15715171, 312616663, 45764089927, 2002330897321
OFFSET
1,2
COMMENTS
pi(n) denotes the number of positive primes not exceeding n.
a(10) > 2*10^9. - Donovan Johnson, Dec 18 2009
a(12) > 3*10^12. - Giovanni Resta, Mar 31 2017
EXAMPLE
sigma(49) - phi(49) = 15 = pi(49), so 49 is a term of the sequence.
MATHEMATICA
Select[Range[10^5], DivisorSigma[1, #] - EulerPhi[#] == PrimePi[#] &] (* Giovanni Resta, Mar 31 2017 *)
PROG
(PARI) isok(n) = sigma(n) - eulerphi(n) == primepi(n); \\ Michel Marcus, Oct 13 2014
CROSSREFS
Sequence in context: A225317 A288527 A269630 * A167601 A061185 A182279
KEYWORD
nonn,more
AUTHOR
Joseph L. Pe, Feb 06 2002
EXTENSIONS
a(6)-a(9) from Donovan Johnson, Dec 18 2009
a(10)-a(11) from Giovanni Resta, Mar 31 2017
STATUS
approved