login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067710
a(n) = n! * Sum_{k|n} (Sum_{j=1..k} 1/j); the k-sum is over the positive divisors, k, of n.
1
1, 5, 17, 110, 394, 4884, 18108, 294384, 2054736, 27986400, 160460640, 5733590400, 26029779840, 727452230400, 11030096851200, 223495556659200, 1579093018675200, 83918534992588800, 553210247226470400, 32584767906539520000, 463473994611898368000, 10352822932220719104000
OFFSET
1,2
FORMULA
E.g.f.: Sum_{k>0} log(1-x^k)/(x^k-1). - Vladeta Jovovic, Aug 01 2004
EXAMPLE
a(6) = 6! *(1 + (1 + 1/2) + (1 + 1/2 + 1/3) + (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6)) because 1, 2, 3 and 6 are the divisors of 6.
MATHEMATICA
a[n_] := n! * DivisorSum[n, HarmonicNumber[#] &]; Array[a, 20] (* Amiram Eldar, Aug 18 2023 *)
PROG
(PARI) a(n) = n!*sumdiv(n, k, sum(j=1, k, 1/j)); \\ Michel Marcus, Aug 20 2023
CROSSREFS
Sequence in context: A234797 A062586 A301641 * A197912 A203114 A198027
KEYWORD
nonn
AUTHOR
Leroy Quet, Feb 05 2002
EXTENSIONS
a(20)-a(22) from Amiram Eldar, Aug 18 2023
STATUS
approved