login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067613
Triangular table of coefficients of the Hermite polynomials, divided by 2^floor(n/2).
1
1, 0, -2, -1, 0, 2, 0, 6, 0, -4, 3, 0, -12, 0, 4, 0, -30, 0, 40, 0, -8, -15, 0, 90, 0, -60, 0, 8, 0, 210, 0, -420, 0, 168, 0, -16, 105, 0, -840, 0, 840, 0, -224, 0, 16, 0, -1890, 0, 5040, 0, -3024, 0, 576, 0, -32, -945, 0, 9450, 0, -12600, 0, 5040, 0, -720, 0, 32, 0, 20790, 0, -69300, 0, 55440, 0, -15840, 0, 1760, 0, -64
OFFSET
0,3
COMMENTS
Series development of exp(-(c+x)^2) at x=0 gives a Hermite polynomial in c as coefficient for x^k.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010(rows 0 to 140, flattened)
FORMULA
HermiteH[n, c](-1)^n / 2^Floor[n/2]
MAPLE
S:=series(exp(-2*c*x-x^2), x, 13):
seq(seq(coeff(coeff(S, x, n)*n!/2^floor(n/2), c, j), j=0..n), n=0..12); # Robert Israel, Dec 07 2018
MATHEMATICA
Table[ CoefficientList[ HermiteH[ n, c ], c ](-1)^n/2^Floor[ n/2 ], {n, 0, 12} ] (* or, equivalently *) a1=CoefficientList[ Series[ Exp[ c^2 ]Exp[ -(c+x)^2 ], {x, 0, 12} ], x ]; a2=(CoefficientList[ #, c ]&/@ a1 ) Range[ 0, 12 ]! 2^-Floor[ Range[ 0, 12 ]/2 ]
PROG
(PARI) row(n) = Vecrev((-1)^n*polhermite(n)/2^floor(n/2)) \\ Michel Marcus, Dec 07 2018
CROSSREFS
Cf. A060821.
Sequence in context: A022881 A328748 A093201 * A264034 A058531 A093073
KEYWORD
easy,sign,tabl,look
AUTHOR
Wouter Meeussen, Feb 01 2002
STATUS
approved