login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least common multiple of numbers in {1,2,3,...,n-1} which do not divide n.
3

%I #19 Mar 25 2020 10:42:20

%S 1,1,2,3,12,20,60,210,840,504,2520,27720,27720,51480,360360,180180,

%T 720720,4084080,12252240,232792560,232792560,21162960,232792560,

%U 5354228880,5354228880,2059318800,26771144400,80313433200,80313433200

%N a(n) is the least common multiple of numbers in {1,2,3,...,n-1} which do not divide n.

%H Reinhard Zumkeller, <a href="/A067391/b067391.txt">Table of n, a(n) for n = 1..1000</a>

%F Let f(n) = lcm(1, 2, ..., n-1) = A003418(n-1). If n = 2*p^k for some prime p, then a(n) = f(n)/p; otherwise a(n) = f(n).

%e For n=10: non-divisors = {3,4,6,7,8,9}, lcm(3,4,6,7,8,9) = 8*9*7 = 504 = a(10).

%e For n=18, a(18) = lcm(4,5,7,8,10,11,12,13,14,15,16,17) = 4084080.

%t a[n_] := LCM@@Select[Range[1, n-1], Mod[n, # ]!=0& ]

%t Join[{1,1},Table[LCM@@Complement[Range[n],Divisors[n]],{n,3,30}]] (* _Harvey P. Dale_, Mar 27 2013 *)

%o (Haskell)

%o a067391 n | n <= 2 = 1

%o | otherwise = foldl lcm 1 $ a173540_row n

%o -- _Reinhard Zumkeller_, Apr 04 2012

%Y Cf. A049820 [count], A007978 [min], A024816 [sum], A055067 [product].

%Y Cf. A003418, A066574, A038610.

%Y Cf. A173540.

%K nonn

%O 1,3

%A _Labos Elemer_, Jan 22 2002