login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*n^3 + 2*n^2 + n.
3

%I #22 Sep 08 2022 08:45:05

%S 0,6,34,102,228,430,726,1134,1672,2358,3210,4246,5484,6942,8638,10590,

%T 12816,15334,18162,21318,24820,28686,32934,37582,42648,48150,54106,

%U 60534,67452,74878,82830,91326,100384,110022,120258,131110,142596

%N a(n) = 3*n^3 + 2*n^2 + n.

%H Vincenzo Librandi, <a href="/A067389/b067389.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = n*A056109(n) = A045991(n+1)+A033431(n). - _Henry Bottomley_, Jan 25 2002

%F From _Chai Wah Wu_, Apr 25 2017: (Start)

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.

%F G.f.: 2*x*(x^2 + 5*x + 3)/(x - 1)^4. (End)

%p a:=n->n+2*n^2+3*n^3: seq(a(n), n=0..36); # _Zerinvary Lajos_, Oct 05 2007

%t Table[3*n^3+2*n^2+n,{n,0,80}] (* _Vladimir Joseph Stephan Orlovsky_, May 07 2011 *)

%t LinearRecurrence[{4,-6,4,-1},{0,6,34,102},40] (* _Harvey P. Dale_, Oct 01 2019 *)

%o (Magma) [3*n^3 + 2*n^2 + n: n in [0..60]]; // _Vincenzo Librandi_, May 08 2011

%K nonn,easy

%O 0,2

%A _George E. Antoniou_, Jan 21 2002

%E More terms from _Henry Bottomley_, Jan 25 2002