login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows of incomplete convolutions of Fibonacci numbers F(n+1) = A000045(n+1), n>=0.
13

%I #18 Apr 11 2016 23:12:14

%S 1,1,2,2,3,5,3,5,7,10,5,8,12,15,20,8,13,19,25,30,38,13,21,31,40,50,58,

%T 71,21,34,50,65,80,96,109,130,34,55,81,105,130,154,180,201,235,55,89,

%U 131,170,210,250,289,331,365,420,89,144,212,275,340,404,469,532,600,655,744,144,233,343,445

%N Triangle read by rows of incomplete convolutions of Fibonacci numbers F(n+1) = A000045(n+1), n>=0.

%C The diagonals d>=0 (d=0: main diagonal) give convolutions of Fibonacci numbers F(n+1), n>=0, with those with d-shifted index: a(d+n,d)=sum(F(k+1)*F(d+n+1-k),k=0..n), n>=0.

%C The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are generated by A(x*z)*(A(z)-x*A(x*z))/(1-x), with A(x) := 1/(1-x-x^2) (g.f. Fibonacci F(n+1), n>=0).

%C The diagonals give A001629(n+2), A023610, A067331-4, A067430-1, A067977-8 for d= n-m= 0..9, respectively.

%C A row with n terms = the dot product of vectors with n terms: (1,1,2,3,...)dot(...3,2,1,1) with carryovers; such that (3, 5, 7, 10) = (1*3=3), (1*2+3=5), (2*1+5=7), (3*1+7=10).

%H Michael De Vlieger, <a href="/A067330/b067330.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n, m)= sum(F(k+1)*F(n-k+1), k=0..m), n>=m>=0, else 0.

%F a(n, m)= (((3*m+5)*F(m+1)+(m+1)*F(m))*F(n-m+1)+(m*F(m+1)+2*(m+1)*F(m))*F(n-m))/5.

%F G.f. for diagonals d=n-m>=0: (x^d)*(F(d+1)+F(d)*x)/(1-x-x^2)^2, with F(n) := A000045(n) (Fibonacci).

%F a(n, m) = ((-1)^m*F(n-2*m-1)+m*L(n+2)+5*F(n)+4*F(n-1))/5, with F(-n) = (-1)^(n+1)*F(n), hence a(n, m) = (2*(m+1)*L(n+2)-A067979(n, m))/5, n>=m>=0. - _Ehren Metcalfe_, Apr 11 2016

%e {1}; {1,2}; {2,3,5}; {3,5,7,10}; ...; p(2,n)= 2+3*x+5*x^2.

%t Table[Sum[Fibonacci[k + 1] Fibonacci[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 11 2016 *)

%Y Cf. A067418 (triangle with rows read backwards).

%K nonn,easy,tabl

%O 0,3

%A _Wolfdieter Lang_, Feb 15 2002