login
A067265
Numbers n such that prime(n+1) - prime(n) = M(n) where M(n) is the Mertens function A002321(n).
1
1, 226, 336, 395, 398, 552, 554, 583, 588, 805, 872, 926, 957, 961, 984, 995, 1008, 1263, 1275, 1363, 1384, 1443, 1447, 1450, 1456, 1462, 1946, 1949, 1957, 1964, 1988, 1991, 1992, 1997, 2008, 2023, 2028, 2037, 2055, 2076, 2107, 2175, 2203, 2234, 2240
OFFSET
1,2
LINKS
MATHEMATICA
PrimePi/@With[{nn=2500}, Transpose[Select[Thread[{Partition[Prime[ Range[ nn+1]], 2, 1], Accumulate[Array[MoebiusMu, nn]]}]/.{{a_, b_}, c_}-> {a, b, c}, #[[2]]-#[[1]]==#[[3]]&]][[1]]] (* Harvey P. Dale, Nov 23 2011 *)
CROSSREFS
Sequence in context: A265499 A126897 A296810 * A218040 A158229 A031708
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Feb 21 2002
STATUS
approved