login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rectangular standard Young tableaux with n cells.
3

%I #22 Jul 02 2015 07:58:06

%S 1,2,2,4,2,12,2,30,44,86,2,1190,2,860,12014,26886,2,184758,2,3359202,

%T 2771342,117574,2,327618902,701149022,1485802,828630662,27350160662,2,

%U 808310933492,2,2979826568702,291724349282,259289582,557214344578322,2031957220875002,2

%N Number of rectangular standard Young tableaux with n cells.

%C Number of ways to arrange the numbers 1, 2, .., n=i*j into an i*j rectangle so that each row and each column is increasing.

%C a(p) = 2 for prime p. - _Alois P. Heinz_, Jul 25 2012

%H Alois P. Heinz, <a href="/A067228/b067228.txt">Table of n, a(n) for n = 1..350</a>

%F a(n) = n! * Sum_{i|n} Product_{k=0..n/i-1} k!/(i+k)!. - _Alois P. Heinz_, Jul 25 2012

%p with(numtheory):

%p a:= n-> n! * add(mul(k!/(i+k)!, k=0..(n/i)-1), i=divisors(n)):

%p seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 25 2012

%t a[n_] := n! * Sum[Product[k!/(i+k)!, {k, 0, n/i-1}], {i, Divisors[n]}]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Jul 02 2015, after _Alois P. Heinz_ *)

%Y Cf. A000085, A060854, A067231.

%Y Column k=0 of A238707.

%K easy,nonn

%O 1,2

%A _Naohiro Nomoto_, Feb 20 2002

%E Better name from _Joerg Arndt_, Feb 24 2014