login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime with digit sum n, or 0 if no such prime exists.
13

%I #25 Dec 14 2020 01:36:37

%S 0,2,3,13,5,0,7,17,0,19,29,0,67,59,0,79,89,0,199,389,0,499,599,0,997,

%T 1889,0,1999,2999,0,4999,6899,0,17989,8999,0,29989,39989,0,49999,

%U 59999,0,79999,98999,0,199999,389999,0,598999,599999,0,799999,989999,0,2998999,2999999,0,4999999

%N Smallest prime with digit sum n, or 0 if no such prime exists.

%H Robert Israel, <a href="/A067180/b067180.txt">Table of n, a(n) for n = 1..1000</a> (first 175 terms from Robert G. Wilson v)

%F a(3k) = 0 for k > 1.

%F a(3k-2) = A067523(2k-1), a(3k-1) = A067523(2k), for all k > 1. - _M. F. Hasler_, Nov 04 2018

%e a(68) = 59999999 because 59999999 is the smallest prime with digit sum = 68;

%e a(100) = 298999999999 because 298999999999 is the smallest prime with digit sum = 100.

%p g:= proc(s,d) # integers of <=d digits with sum s

%p if s > 9*d then return [] fi;

%p if d = 1 then return [s] fi;

%p [seq(op(map(t -> j*10^(d-1)+ t, g(s-j,d-1))),j=0..9)];

%p end proc:

%p f:= proc(n) local d, j,x,y;

%p if n mod 3 = 0 then return 0 fi;

%p for d from ceil(n/9) do

%p if d = 1 then

%p if isprime(n) and n < 10 then return n

%p else next

%p fi

%p fi;

%p for j from 1 to 9 do

%p for y in g(n-j,d-1) do

%p x:= 10^(d-1)*j + y;

%p if isprime(x) then return x fi;

%p od od od;

%p end proc:

%p f(1):= 0: f(3):= 3:

%p map(f, [$1..100]); # _Robert Israel_, Dec 13 2020

%t a = Table[0, {100}]; Do[b = Apply[ Plus, IntegerDigits[ Prime[n]]]; If[b < 101 && a[[b]] == 0, a[[b]] = Prime[n]], {n, 1, 10^7} ]; a

%t f[n_] := If[n > 5 && Mod[n, 3] == 0, 0, Block[{k = 1, lmt, lst = {}, ip = IntegerPartitions[n, Round[1 + n/9], {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}]}, lmt = 1 + Length@ ip; While[k < lmt, AppendTo[lst, Select[ FromDigits@# & /@ Permutations@ ip[[k]], PrimeQ[#] &]]; k++]; Min@ Flatten@ lst]]; f[1] = 0; f[4] = 13; Array[f, 70] (* _Robert G. Wilson v_, Sep 28 2014 *)

%o (PARI) A067180(n)={if(n<2, 0, n<4, n, n%3, my(d=divrem(n,9)); forprime(p=d[2]*10^d[1]-1,,sumdigits(p)==n&&return(p)))} \\ _M. F. Hasler_, Nov 04 2018

%Y Cf. A054750.

%Y Removal of the 0 terms from this sequence leaves A067523.

%K easy,nonn,base

%O 1,2

%A _Amarnath Murthy_, Jan 09 2002

%E Edited and extended by _Robert G. Wilson v_, Mar 01 2002

%E Edited by _Ray Chandler_, Apr 24 2007